Abstract

ABSTRACTDew-harvesting technology radiatively cools a condenser below the dewpoint to achieve condensation of the water vapor from the atmosphere. Due to its passive nature, this technology has attracted broad interest, in particular in the context of the worldwide drinking-water scarcity. However, the fundamental limit of its performance has not yet been clarified. Moreover, the existing applications have been limited to humid areas. Here, we point out the upper bound of the performance of this technology by carefully considering various parameters such as the ambient temperature (Tambient), the relative humidity (RH), and the convection coefficient (h). Moreover, we highlight the potential of a condenser consisting of a selective emitter, which is capable of condensing water vapor under significantly more arid conditions as compared with the use of a blackbody emitter. For example, a near-ideal emitter could achieve a dew-harvesting mass flux () of 13 gm−2hr−1 even at Tambient = 20°C with RH = 40%, under which condition the blackbody emitter cannot harvest any dew. We provide a numerical design of such a selective emitter, consisting of six layers, optimized for dew-harvesting purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.