Abstract
We consider the high-dimensional inference problem where the signal is a low-rank symmetric matrix which is corrupted by an additive Gaussian noise. Given a probabilistic model for the low-rank matrix, we compute the limit in the large dimension setting for the mutual information between the signal and the observations, as well as the matrix minimum mean squared error, while the rank of the signal remains constant. We also show that our model extends beyond the particular case of additive Gaussian noise and we prove an universality result connecting the community detection problem to our Gaussian framework. We unify and generalize a number of recent works on PCA, sparse PCA, submatrix localization or community detection by computing the information-theoretic limits for these problems in the high noise regime. In addition, we show that the posterior distribution of the signal given the observations is characterized by a parameter of the same dimension as the square of the rank of the signal (i.e. scalar in the case of rank one). This allows to locate precisely the information-theoretic thresholds for the above mentioned problems. Finally, we connect our work with the hard but detectable conjecture in statistical physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.