Abstract

The problem of lossless data compression with side information available to both the encoder and the decoder is considered. The finite-blocklength fundamental limits of the best achievable performance are defined, in two different versions of the problem: Reference-based compression, when a single side information string is used repeatedly in compressing different source messages, and pair-based compression, where a different side information string is used for each source message. General achievability and converse theorems are established for arbitrary source-side information pairs. Nonasymptotic normal approximation expansions are proved for the optimal rate in both the reference-based and pair-based settings, for memoryless sources. These are stated in terms of explicit, finite-blocklength bounds, that are tight up to third-order terms. Extensions that go significantly beyond the class of memoryless sources are obtained. The relevant source dispersion is identified and its relationship with the conditional varentropy rate is established. Interestingly, the dispersion is different in reference-based and pair-based compression, and it is proved that the reference-based dispersion is in general smaller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.