Abstract

Inferring properties of the interaction matrix that characterizes how nodes in a networked system directly interact with each other is a well-known network reconstruction problem. Despite a decade of extensive studies, network reconstruction remains an outstanding challenge. The fundamental limitations governing which properties of the interaction matrix (e.g. adjacency pattern, sign pattern or degree sequence) can be inferred from given temporal data of individual nodes remain unknown. Here, we rigorously derive the necessary conditions to reconstruct any property of the interaction matrix. Counterintuitively, we find that reconstructing any property of the interaction matrix is generically as difficult as reconstructing the interaction matrix itself, requiring equally informative temporal data. Revealing these fundamental limitations sheds light on the design of better network reconstruction algorithms that offer practical improvements over existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.