Abstract

AbstractOptical dielectric metasurfaces composed of arrayed nanostructures are expected to enable arbitrary spatial control of incident wavefronts with subwavelength spatial resolution. For phase modulation, one often resorts to two physical effects to implement a 2π‐phase excursion. The first effect relies on guidance by tall nanoscale pillars and the second one exploits resonant confinement by nanoresonators with two degenerate Mie resonances. The first approach requires high aspect ratios, while the second one, known as Huygens’ metasurfaces, is much flatter, and thus easier to manufacture. The two approaches are compared, more focusing on conceptual rather than technological issues, and fundamental limitations with the latter are identified. The origin of the limitations based on general arguments are explained, such as reciprocity, multimode/monomode operation, and symmetry breaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.