Abstract

The direct conversion of gaseous methane to energy-dense liquid derivatives such as methanol and ethanol is of profound importance for the more efficient utilization of natural gas. However, the thermo-catalytic partial oxidation of this simple alkane has been a significant challenge due to the high C-H bond energy. Exploiting electrocatalysis for methane activation via active oxygen species generated on the catalyst surface through electrochemical water oxidation is generally considered as economically viable and environmentally benign compared to energy-intensive thermo-catalysis. Despite recent progress in electrochemical methane oxidation to alcohol, the competing oxygen evolution reaction (OER) still impedes achieving high faradaic efficiency and product selectivity. In this review, an overview of current progress in electrochemical methane oxidation, focusing on mechanistic insights on methane activation, catalyst design principles based on descriptors, and the effect of reaction conditions on catalytic performance are provided. Mechanistic requirements for high methanol selectivity, and limitations of using water as the oxidant are discussed, and present the perspective on how to overcome these limitations by employing carbonate ions as the oxidant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call