Abstract
The laws of heat radiation from black body, the laws of Stefan-Boltzmann, Planck, and Wien are fundamental laws of physics. All in all, a little more than 30 fundamental laws of physics, studied by pupils and students worldwide were disclosed. Scientific disclosure of fundamental laws influences mainly power technology, fuel and energy resources saving. In the late XIX century the laws of heat radiation from gas volumes and the laws of Makarov were disclosed. Since the radiation laws from blackbody are fundamental laws of physics, then the laws of heat radiation from gas volumes are fundamental laws of physics. Effect of using laws of heat radiation from gas volumes on fuel saving, reduction of development pressure on the environment in many countries of the world is shown. Calculation results from heat transfer in combustion chamber of gas-turbine plant are described. The torch in a combustion chamber is modeled by cylindrical gas volumes. Fluxes data from the torch and convective fluxes of cooling air are confirmed by measuring data from chamber-wall temperature.
Highlights
The XIX century is characterized by the creation and wide use of steam engines in industry, rail and water transport
The radiation of cylindrical gas volumes we model by radiation from their common axis of symmetry
In mathematical modeling of heat transfer, the torch in the combustion chamber of the gas turbine unit can be represented a volume body in the form of radiating cylindrical gas volumes, which capacity and location depend on the distribution of isotherms in the combustion chamber
Summary
The XIX century is characterized by the creation and wide use of steam engines in industry, rail and water transport. Steam engine is a heat piston engine in which steam energy becomes work to be done. Steam engines laid the foundation for humanity transition from agricultural to industrial production. The construction and mass creation of steam engines became possible after. Makarov the discovery of the fundamental laws of physics concerning the relationship between the parameters of steam and gas. R.Boyle in 1662 discovered the relationship between pressure of gases (Boyle-Mariotte law) [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.