Abstract
We determine the fundamental group of a closed n-manifold of positive sectional curvature on which a torus T k (k large) acts effectively and isometrically. Our results are: (A) If k>(n − 3)/4 and n ≥ 17, then the fundamental group π1(M) is isomorphic to the fundamental group of a spherical 3-space form. (B) If k ≥ (n/6)+1 and n≠ 11, 15, 23, then any abelian subgroup of π1(M) is cyclic. Moreover, if the T k -fixed point set is empty, then π1(M) is isomorphic to the fundamental group of a spherical 3-space form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.