Abstract

This paper proposes a novel multi-layer approach to fundamental frequency modeling for concatenative speech synthesis based on a statistical learning technique called additive models. We define an additive F0 contour model consisting of long-term, intonational phrase-level, component and short-term, accentual phrase-level, component, along with a least-squares error criterion that includes a regularization term. A back-fitting algorithm, that is derived from this error criterion, estimates both components simultaneously by iteratively applying cubic spline smoothers. When this method is applied to a 7,000 utterance Japanese speech corpus, it achieves F0 RMS errors of 28.9 and 29.8 Hz on the training and test data, respectively, with corresponding correlation coe.cients of 0.806 and 0.777. The automatically determined intonational and accentual phrase components turn out to behave smoothly, systematically, and intuitively under a variety of prosodic conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.