Abstract
Automatic speech recognition (ASR) systems for young children are needed due to the importance of age-appropriate educational technology. Because of the lack of publicly available young child speech data, feature extraction strategies such as feature normalization and data augmentation must be considered to successfully train child ASR systems. This study proposes a novel technique for child ASR using both feature normalization and data augmentation methods based on the relationship between formants and fundamental frequency (f <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</inf> ). Both the f <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</inf> feature normalization and data augmentation techniques are implemented as a frequency shift in the Mel domain. These techniques are evaluated on a child read speech ASR task. Child ASR systems are trained by adapting a BLSTM-based acoustic model trained on adult speech. Using both f <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</inf> normalization and data augmentation results in a relative word error rate (WER) improvement of 19.3% over the baseline when tested on the OGI Kids’ Speech Corpus, and the resulting child ASR system achieves the best WER currently reported on this corpus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.