Abstract

It is argued (a) that the onset times of type III radio emission and of the streaming electrons implies that type III bursts in the interplanetary medium are generated predominantly at the fundamental, (b) that in view of recent observations of ion-sound waves in the interplanetary medium the theory of the generation of the bursts should be revised to take account of these waves, and (c) the revised theory favours fundamental emission. A detailed discussion of the effect of ion-sound waves on type III bursts is given. The most important results are: (1) Ion-sound waves cause enhanced (over scattering off thermal ions) fundamental emission. (2) Second harmonic emission is also enhanced for Te> 5 × 105 K, e.g., low in the corona, but is suppressed for Te< 5 × 105 K, e.g., in the interplanetary medium. (3) The bump-in-the-tail instability for Langmuir waves can be suppressed by the presence of ion-sound waves; it may be replaced by an analogous instability in which fundamental transverse waves are generated directly, with no associated second harmonic, but there are unresolved problems with theory for this process. (4) Very low frequency ion-sound waves can scatter type III radiation. (5) Although the ion-sound waves which have been observed are at too high a frequency to be relevant for these processes, it seems likely that ion-sound waves of the required frequencies are present and do play important roles in the generation of type III bursts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call