Abstract

Unknown parameters critical to understanding the electron-precursor-substrate interactions during electron-beam-induced deposition (EBID) have long limited our ability to fully control this nanoscale, directed assembly method. We report here values that describe the precursor-solid interaction, the precursor surface diffusion coefficient (D), the precursor sticking probability (delta), and the mean precursor surface residence time (tau), which are critical parameters for understanding the assembly of EBID deposits. Values of D = 6.4 microm(2) s(-1), delta = 0.0250, and tau = 3.20 ms were determined for a commonly used precursor molecule, tungsten hexacarbonyl W(CO)6. Space and time predictions of the adsorbed precursor coverage were solved by an explicit finite differencing numerical scheme. Evolving nanopillar surface morphology was derived from simulations considering electron-induced dissociation as the critical depletion term. This made it possible to infer the space- and time-dependent precursor coverage both on and around nanopillar structures to better understand local precursor dynamics during mass-transport-limited (MTL) and reaction-rate-limited (RRL) EBID.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.