Abstract
Abstract EBLM J0113+31 is moderately bright (V=10.1), metal-poor ([Fe/H] ≈−0.3) G0V star with a much fainter M dwarf companion on a wide, eccentric orbit (=14.3 d). We have used near-infrared spectroscopy obtained with the SPIRou spectrograph to measure the semi-amplitude of the M dwarf’s spectroscopic orbit, and high-precision photometry of the eclipse and transit from the CHEOPS and TESS space missions to measure the geometry of this binary system. From the combined analysis of these data together with previously published observations we obtain the following model-independent masses and radii: M1 = 1.029 ± 0.025M⊙, M2 = 0.197 ± 0.003M⊙, R1 = 1.417 ± 0.014R⊙, R2 = 0.215 ± 0.002R⊙. Using R1 and the parallax from Gaia EDR3 we find that this star’s angular diameter is θ = 0.0745 ± 0.0007 mas. The apparent bolometric flux of the G0V star corrected for both extinction and the contribution from the M dwarf (<0.2 per cent) is ${\mathcal {F}}_{\oplus ,0} = (2.62\pm 0.05)\times 10^{-9}$ erg cm−2 s−1. Hence, this G0V star has an effective temperature Teff, 1 = 6124 K ± 40 K (rnd.) ± 10 K (sys.). EBLM J0113+31 is an ideal benchmark star that can be used for “end-to-end” tests of the stellar parameters measured by large-scale spectroscopic surveys, or stellar parameters derived from asteroseismology with PLATO. The techniques developed here can be applied to many other eclipsing binaries in order to create a network of such benchmark stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.