Abstract

Combining an analytical and numerical approach we investigate the dispersion of the topologically protected spin-filtered edge states of the quantum spin Hall state on honeycomb and ruby nets with zigzag (ZZ) and armchair (AC) edges. We show that the Fermi velocity of the helical edge states on ZZ edges increases linearly with the strength of the spin-orbit coupling (SOC) whereas for AC edges the Fermi velocity is independent of the SOC. Also the decay length of edge states into the bulk is dramatically different for AC and ZZ edges, displaying an inverse functional dependence on the SOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call