Abstract

The equilibrium constant of a chemical reaction is arguably the key thermodynamic parameter in chemistry; we naturally expect that equilibrium constants are determined accurately. The majority of equilibrium constants determined today are those of binding reactions that form affinity complexes, such as protein-protein, protein-DNA, and protein-small molecule. There is growing awareness that the determination of equilibrium constants for highly stable affinity complexes may be very inaccurate. However, fundamental (i.e., method-independent) determinants of accuracy are poorly understood. Here, we present a study that explicitly shows what the accuracy of equilibrium constants of affinity complexes depends on. This study reveals the critical importance of the choice of concentration of interacting components and creates a theoretical foundation for improving the accuracy of the equilibrium constants. The predicted influence of concentrations on accuracy was confirmed experimentally. The results of this fundamental study provide instructive guidance for experimentalists independently on the method they use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.