Abstract

In this work, the laminar combustion characteristics of H2/N2/air (H2/CO2/air) were systematically investigated under different hydrogen ratios (40–100%) and equivalence ratios (0.4–1.0) in a closed combustion vessel using the spherical expanding flame method associated with Schlieren technology. The unstretched laminar burning velocities were compared with data from previous study, and the result indicates that excellent agreements are obtained. Numerical simulations were also conducted using GRI3.0 and USC II mechanisms to compare with the present experimental results. The Markstein length for H2/inert gas can be decreased by decreasing the equivalence ratio and hydrogen ratio. The results indicate that the H2/inert gas premixed flames tend to be more unstable with the decrease of equivalence ratio and hydrogen ratio. For H2/N2 mixture, the suppression effect on laminar burning velocity is caused by modified specific heat of mixtures and decreased heat release, which result in a decreased flame temperature. For H2/CO2 mixture, the carbon dioxide has stronger dilution effect than nitrogen in reducing laminar burning velocity owing to both thermal effect and chemical effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.