Abstract
The present paper investigates the fundamental characteristics of wind loading on vaulted (cylindrical) free roofs based on a wind tunnel experiment and a computational fluid dynamics (CFD) analysis using Large Eddy Simulation (LES). In the wind tunnel experiment, wind pressures at many points, both on the top and bottom surfaces of rigid roof models, were measured in a turbulent boundary layer. The wind tunnel models, including the tubing system installed in the roof and columns, were made using a 3D printer, which made the roof thickness as small as 2 mm, whereas the span B was 150 mm and the length L ranged from 150 to 450 mm. The rise-to-span ratio f/B ranged from 0.1 to 0.4. Pressure taps were installed along the center arc and an arc near the roof edge (verge) of an instrumented model with a length-to-span ratio of L/B = 1. The value of L/B of the tested models was changed from 1 to 3 using one or two dummy models, which had the same configuration as that of the instrumented model but no pressure taps. The wind direction θ was changed from 0° (perpendicular to the eaves) to ±90° (parallel to the eaves). The CFD simulation was carried out only for limited cases, that is, f/B = 0.1 and 0.4 and θ = 0° and 45°, considering the computational time. The effects of f/B, L/B, and θ on the mean (time-averaged) and fluctuating wind pressures acting on the roofs were investigated. In particular, the flow mechanism generating large wind forces on the roof was discussed. An empirical formula was provided for the distribution of mean wind force coefficients along the center arc (Line C) at θ = 0° and 30° and along the edge arc (Line E) at θ = 40° for each f/B ratio. Note that these wind directions provided the maximum and minimum mean wind force coefficients within all wind directions for Lines C and E. Furthermore, the maximum and minimum peak wind force coefficients on the two arcs were presented. The effect of turbulence intensity of approach flow on the maximum and minimum peak wind force coefficients was investigated. The experimental results were compared with those estimated using a peak factor approach, which showed a relatively good agreement between them. The data presented here can be used to guide the design of the main wind force-resisting systems and the cladding/components of vaulted-free roofs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.