Abstract

With the aim of obtaining comprehensive information on the selection of synthetic adsorbents for industrial applications, effect of pore and chemical structure of industrial-grade synthetic adsorbents on adsorption capacity of several pharmaceutical compounds was investigated. For relatively low molecular mass compounds, such as cephalexin, berberine chloride and tetracycline hydrochloride, surface area per unit volume of polystyrenic adsorbents dominated the equilibrium adsorption capacity. On the contrary, effect of pore size of the polystyrenic adsorbents on the equilibrium adsorption capacity was observed for relatively high molecular mass compounds, such as rifampicin, Vitamin B 12 and insulin. Polystyrenic adsorbent with high surface area and small pore size showed small adsorption capacity for relatively high molecular mass compounds, whereas polystyrenic adsorbent with relatively small surface area but with large pore size showed large adsorption capacity. Effect of chemical structure on the equilibrium adsorption capacity of several pharmaceutical compounds was also studied among polystyrenic, modified polystyrenic and polymethacrylic adsorbents. The modified polystyrenic adsorbent showed larger adsorption capacity for all compounds tested in this study due to enhanced hydrophobicity. The polymethacrylic adsorbent possessed high adsorption capacity for rifampicin and insulin, but it showed lower adsorption capacity for the other compounds studied. This result may be attributed to hydrogen bonding playing major role for the adsorption of compounds on polymethacrylic adsorbent. Furthermore, column adsorption experiments were operated to estimate the effect of pore characteristics of the polystyrenic adsorbents on dynamic adsorption behavior, and it is found that both surface area and pore size of the polystyrenic adsorbents significantly affect the dynamic adsorption capacity as well as flow rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.