Abstract
Frequency-modulated (FM) combs based on active cavities like quantum cascade lasers have recently emerged as promising light sources in many spectral regions. Unlike passive modelocking, which generates amplitude modulation using the field’s amplitude, FM comb formation relies on the generation of phase modulation from the field’s phase. They can therefore be regarded as a phase-domain version of passive modelocking. However, while the ultimate scaling laws of passive modelocking have long been known—Haus showed in 1975 that pulses modelocked by a fast saturable absorber have a bandwidth proportional to effective gain bandwidth—the limits of FM combs have been much less clear. Here, we show that FM combs based on fast gain media are governed by the same fundamental limits, producing combs whose bandwidths are linear in the effective gain bandwidth. Not only do we show theoretically that the diffusive effect of gain curvature limits comb bandwidth, but we also show experimentally how this limit can be increased. By adding carefully designed resonant-loss structures that are evanescently coupled to the cavity of a terahertz laser, we reduce the curvature and increase the effective gain bandwidth of the laser, demonstrating bandwidth enhancement. Our results can better enable the creation of active chip-scale combs and be applied to a wide array of cavity geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.