Abstract
Time-varying materials bring an extra degree of design freedom compared to their conventional time-invariant counterparts. However, few discussions have focused on the underlying physical difference between spatial and temporal boundaries. In this letter, we thoroughly investigate those differences from the perspective of conservation laws. By doing so, the building blocks of optics and electromagnetics such as the reflection law, Snell’s law, and Fresnel’s equations can be analogously derived in a temporal context, but with completely different interpretations. Furthermore, we study the unique features of temporal boundaries, such as their nonconformance to energy conservation and causality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.