Abstract

In the present work, critical testing methods are employed in order to assess the formability of a Zn-Ti-Cu alloy, evaluating, therefore, the anisotropic properties of the produced sheet. The determination of plastic strain ratios and the induced combined mathematical expressions, utilizing bi-axial strain measurements for the various test directions (0, 45 and 90 degrees towards the RD), together with the performance of cupping tests are compiled, aiming to rank and interpret the bending and sheet metal roll-forming capability. Moreover, the microstructural characterization is realized to address the influence of grain and phase structure on the sheet metal formability and identify potential optimization routes. Fracture analysis approach elucidated the micro-mechanisms prevailed in damage evolution and accumulation during monotonic loading, signifying the importance of microstructure development during thermomechanical process history.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.