Abstract
A general understanding of the molecular plating process was obtained recently, which serves as a first step towards further improvements of the method aiming, for example, at the production of smooth, crack-free targets for nuclear physics applications. Constant current density electrolysis experiments were performed in organic media containing the model electrolyte Nd(NO3)3·6H2O. The process was investigated by considering influences of the electrolyte concentration (0.11, 0.22, 0.44 mM), the surface roughness of the deposition substrates (a few tens of nm), and the plating solvent (an isopropanol/isobutanol mixture, and N,N-dimethylformamide). The response of the process to changes of these parameters was monitored by recording cell potential curves and by characterizing the obtained deposits with γ-ray spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. By changing the solvent from isopropanol/isobutanol mixtures to N,N-dimethylformamide, we have succeeded in producing smooth, crack-free Nd targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.