Abstract
Irradiation of solids with energetic particles leads to the production of lattice defects in the form of Frenkel pairs, anti-site defects, defect clusters, dislocation loops and amorphous zones in the bulk and to sputtered atoms, adatoms, and craters near the surface. Predicting which types of damage prevail in specific situations has been a difficult chore; however, recent developments in computer simulations have greatly facilitated this task. This review highlights the results of these simulations and provides a fundamental understanding of the damage process in a variety of pure metals, intermetallic compounds, and pure Si. The special role of surfaces on damage production is a central focus of this work. In addition, recent experimental investigations of alloy disordering in Cu 3Au during 1 MeV He bombardment and STM imaging of single ion impacts on Pt will be reviewed to illustrate the level of accuracy that has now been achieved by these simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.