Abstract

Capillary electromigration techniques are often considered ideal methods for the analysis of chiral compounds due to the high resolution power and flexibility of the technique. Therefore, especially capillary electrophoresis using a chiral selector in the background electrolyte, also termed electrokinetic chromatography, has found widespread acceptance in analytical enantioseparations of drug compounds in pharmaceuticals and biological media. Moreover, mechanistic studies on analyte complexation by the chiral selectors have continuously been conducted in an effort to rationalize enantioseparation phenomena. These studies combined capillary electrophoresis with spectroscopic techniques such as nuclear magnetic resonance and/or molecular modeling. The present review focuses on recent examples of mechanistic aspects of capillary electromigration enantioseparations and summarizes recent applications of chiral pharmaceutical and biomedical analysis published between January 2009 and August 2010.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.