Abstract

This research paper complements our earlier qualitative study of the effect of viscosity and thermal conductivity on the radial oscillation and relaxation of non-rotating neutron stars. The fundamental and first two lowest-frequency excited modes of radial oscillation have been computed in the high nuclear density regime for a set of seven realistic equations of state (EoS) as functions of central energy density. Various types of zero-temperature EoS of cold nucleonic and hybrid nucleon–hyperon–quark matter models are used in the inner core to determine the internal structure in and around the hydrostatic equilibrium states and investigate the influence of each EoS on the dynamical behavior of non-rotating neutron stars. We confirm the principal results of earlier, related studies that suggest an underlying correlation between the frequency spectrum of the fundamental oscillation mode and the variation of the adiabatic index over the high nuclear-density regime. We provide valuable information to impose further constraints on the plausible set of realistic EoS models, in addition to the practical applications for the rapidly evolving field of asteroseismology of compact objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.