Abstract

The angle-resolved scattered light sensor OS500 (made by Optosurf in Ettlingen, Germany) is an optical measuring device that is becoming more and more frequently used inindustrial applications and for the characterization of surfaces in general as well as for measuringroughness and shape. The angle-resolved measurement principle allows the statistical distributionof the gradients of a surface, resulting from the reflectance of the light at the flank angles of theareas examined, to be measured and consequently enables the geometric surface texture to beevaluated. Thus the topography of surfaces is not measured; instead the gradients are evaluated.Since the scattered light sensor measures angles and not distances, the sensor is immune to out-ofplanevibrations in the direction of measurement. Another distinct characteristic of the scattered light sensor is the high degree of sensor dynamics, which when combined with the statisticalanalysis of the surface angles, allows even the finest changes in the surface structure to be detected. Accordingly, it makes sense to use the sensor to monitor processes in which the surfaces and their structures change only slightly during the manufacturing process. One such process is so-called vibratory finishing. This process and several other manufacturing processes geared towards sustainable manufacturing methods are being examined by the “Department of Mechanical and Aerospace Engineering” at the University of California, Davis (CA, USA). On the basis of a ray tracing model, simulations calculations, meaning only virtual measurements, will demonstrate the suitability of the sensor for monitoring manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.