Abstract

The integrated equations of deep sea mooring lines in static equilibrium under consideration of gravity force and line elongation are obtained. The most useful forms of the equations for designing deep sea mooring system are those in which horizontal displacement and horizontal and vertical components of tension are obtained as functions of line length, water depth, critical tension and unit weight of line. When the dynamic simulation of a buoy system is carried out, line tensions acting on the buoy should be represented as a linear function of displacement. Therefore the linearisation method is introduced by use of linearisation coefficient matrix. Translation formulae for the matrix from two to three dimensions is also presented. The influence of line elongation on the horizontal component of tension in a taut mooring condition is important, therefore the elongation of stretched deep sea mooring line must be considered carefully. Also, the scaling law under consideration of line elongation in static equilibrium, which is necessary in estimation from a small sized experiment, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.