Abstract
The CYP11A1 gene encodes P450scc (cholesterol side-chain cleavage enzyme), which catalyzes the first step for the synthesis of steroids. Expression of CYP11A1 is controlled by transcription factor SF-1 (steroidogenic factor 1). Two functional SF-1-binding sites, P and U, located at -40 and -1,600 regions of the CYP11A1 gene, have been identified, but their exact functions with respect to basal activation vs. cAMP response have not been dissected. We have addressed this question by examining the ability of the mutated human CYP11A1 promoter to drive LacZ reporter gene expression in transgenic mouse lines. The activity of the mtP mutant promoter was greatly reduced, indicating the importance of the P site. Mutation of the upstream U site also resulted in reduced reporter gene expression, but some residual activity remained. This residual reporter gene activity was detected in the adrenal and gonad in a tissue-specific manner. ACTH and hCG can stimulate LacZ gene expression in the adrenals and testes of transgenic mice driven by the wild-type but not the mtU promoter. These results indicate that the upstream SF-1-binding site is required for hormonal stimulation. Our experiments demonstrate the participation of both the proximal and the upstream SF-1-binding sites in hormone-responsive transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.