Abstract

Two general trends in the evolution of the nervous system have been toward centralization of neuronal somata and cephalization of the central nervous system (CNS). These organizational trends are apparent in the nervous system of annelid worms, including leeches. To determine if the anterior brain of the leech serves functions similar to those of the brains of more complex organisms, including vertebrates, we ablated one of the two major regions of the cephalic brain--the subesophageal ganglion (SubEG). For anatomical reasons, ablations were performed in embryos, rather than in adults. At the end of embryonic development, we observed the leeches' spontaneous behaviour and their responses to moderate touch. We observed that, although the midbody ganglia of the leech CNS display a high degree of local autonomy, the cephalic brain provides generalized excitation to the rest of the CNS, is a source of selective inhibition that modulates behaviour, integrates sensory information from the head with signals from the rest of the body, and plays an important role in organizing at least some complicated whole-body behaviours. These roles of the leech cephalic brain are common features of brain function in many organisms, and our results are consistent with the hypothesis that they arose early in evolution and have been conserved in complex nervous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.