Abstract

Surfactant-intercalated Zn and Al layered double hydroxides (ZnAl-LDHs) were synthesized via spontaneous self-assembly of the surfactants (sodium dodecyl sulfate and sodium dodecyl benzene sulfonate) and the LDH salt precursors. To understand the function of the surfactants in the synthesis, the surfactant-modified ZnAl-LDHs and their intermediates before aging were characterized via X-ray diffraction, Fourier transform infrared spectroscopy, Field emission scanning electron microscopy, and thermogravimetric analysis. In addition, fluorescence spectroscopy was used to in situ trace the microenvironmental variations of the reactants in the synthesis. It was found that the anionic surfactants can interact with the LDH precursors to form cooperative micellar assemblies, which increase the concentration of cationic counter ions around the micelles leading to enhanced growth of the LDH sheets along their lamellar surface direction and the stacking of LDH sheets into nanoparticles as the surfactant possesses longer molecular length. Because of the hydrophobicity of the intermediate sheets coated with surfactants, the reaction between the dissolved CO32− and the LDH intermediate sheets can be greatly reduced, and thus no strict N2 protection was necessary in this method. This mechanistic understanding of the effects of the surfactants on the formation of LDHs is critical in successful synthesis of organic-intercalated LDHs in complicated system by void the interruption of competitive ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call