Abstract
The signal sequence of secretory proteins and the signal-anchor sequence of type II membrane proteins initiate the translocation of the following polypeptide segments, whereas the signal-anchor sequence of cytochrome P-450-type membrane proteins mediates the membrane insertion of the polypeptide via a signal-recognition particle-dependent mechanism but does not lead to the translocation of the following C-terminal sequences. To establish the structural requirements for the function of signal and signal-anchor sequences, we constructed chimeric proteins containing artificial topogenic sequences in which the N-terminal net charge and the length of the hydrophobic segment were systematically altered. Utilizing an in vitro translation-translocation system, we found that hydrophobic segments consisting of 7-10 leucine residues functioned as signal sequences whereas segments with 12-15 leucine residues showed different topogenic functions, behaving as signal sequences or P-450-type signal-anchor sequences, depending on the N-terminal charge. From these observations, we propose that the function of N-terminal topogenic sequences depends on a balance between the N-terminal charge and the length of the following hydrophobic segment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.