Abstract

Passage cells frequently occur in the endodermis and exodermis but are not ubiquitous in either layer. Passage cells occur in the form of short cells in the dimorphic type of exodermis. In both layers, Casparian bands are formed in all cells, but the subsequent development of suberin lamellae and thick, cellulosic walls are delayed or absent in the passage cells. Available evidence suggests that passage cells of the endodermis are important for the transfer of calcium and magnesium into the stele and thus into the transpiration stream. They become the only cells which present a plasmalemma surface to the soil solution (and are thus capable of ion uptake) when the epidermis and central cortex die. This occurs naturally in some herbaceous and woody species and is known to be promoted by drought. Most evidence indicates that the development of suberin lamellae in both the endodermis and exodermis increases the resistance of the root to the radial flow of water. Passage cells thus provide areas of low resistance for the movement of water, and the position of these cells in the endodermis (i.e., in close proximity to the xylem) is explained in terms of function. Exodermal passage cells have a cytoplasmic structure suggesting an active role in ion uptake. This may be related to the tendency of the epidermis to die, leaving the passage cells as the only ones with their membranes exposed to the soil solution. Passage cells in the exodermis attract endomycorrhizal fungi while those in the endodermis do not. It is clear that passage cells of the endodermis and exodermis play a variety of roles in the plant root system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call