Abstract

Administration of the synthetic estrogen diethylstilbestrol (DES) lowers the systemic resistance of mice to challenge with either tumor cells or the facultative intracellular parasite Listeria monocytogenes. To assess the potential role of impaired mononuclear phagocyte system (MPS) function in this depression of host resistance, we addressed the question of systemic perturbations of the MPS induced by administration of DES. A panel of objective quantitative markers which have been previously shown to identify and characterize macrophages in the several stages of development of activation was employed. DES perturbed the resident population of peritoneal macrophages by increasing their number approximately twofold and by enhancing their competence for phagocytosis, cytostasis of tumor cells, and secretion of plasminogen activator. When we examined the competence of the MPS in DES-treated mice to respond to challenge with activating stimuli, we found that DES systemically suppressed the development of macrophages, in response to either pyran copolymer or BCG, to develop tumoricidal function and to gain competence for secretion of reactive oxygen intermediates such as H 2O 2. Since these data suggested that DES inhibited the development of macrophages from a precursor stage (i.e., responsive macrophages) to activated macrophages in vivo, we tested this possibility directly by applying known activating signals in vitro to responsive macrophages. Responsive macrophages from DES-treated mice did not become activated in response to the application of two known potent activating signals (i.e., MAF + LPS). Taken together, the data indicate that DES systemically perturbs the MPS and does so by enhancing development of the early stages of maturation and suppressing subsequent development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call