Abstract

Synaptic plasticity is widely regarded as the cellular basis of learning and memory. Understanding the molecular mechanism of synaptic plasticity has been one of center pieces of neuroscience research for more than three decades. It has been well known that the trafficking of α-amino-3-hydroxy-5-methylisoxazoloe-4-propionic acid- (AMPA-) type, N-methyl-D-aspartate- (NMDA-) type glutamate receptors to and from synapses is a key molecular event underlying many forms of synaptic plasticity. Kainate receptors are another type of glutamate receptors playing important roles in synaptic transmission. In addition, GABA receptors also play important roles in modulating the synaptic plasticity. Kinesin superfamily proteins (also known as KIFs) transport various cargos in both anterograde and retrograde directions through the interaction with different adaptor proteins. Recent studies indicate that KIFs regulate the trafficking of NMDA receptors, AMPA receptors, kainate receptors, and GABA receptors and thus play important roles in neuronal activity. Here we review the essential functions of KIFs in the trafficking of neuroreceptor and synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.