Abstract

Heterochromatin is characteristically more compact than euchromatin in the eukaryotic genome. The establishment of heterochromatin is mediated by special histone modifications, recruitment and propagation of heterochromatin specific proteins, as well as formation of special primary and high order structures of chromatin. Chromatin remodeling factors are ATPases that can alter the conformation and/or positioning of nucleosomes along DNA in an ATP-dependent manner. There is increasing evidence implicating chromatin remodeling activities in heterochromatin in various organisms ranging from yeasts to humans. Chromatin remodeling factors play roles in the establishment, maintenance and epigenetic inheritance of heterochromatin, but the underlying molecular mechanisms have just begun to be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.