Abstract
Cathepsins belongs to the cysteine protease family, which are activated by an acidic environment. They play essential biological roles in the innate immunity and development of animals. Here, we identified a 62 kDa cathepsin L-like protease from the silkworm Bombyx mori. It contained putative conserved domains, including an I29 inhibitor domain and a peptidase C1A domain. The expression analysis revealed that cathepsin L-like was highly produced in the fat body, and 20-hydroxyecdysone (20 E) induced its expression. After challenge with three different types of heat-killed pathogens (Escherichia coli, Beauveria bassiana, and Bacillus cereus), the mRNA levels of cathepsin L-like significantly increased and displayed variable expression patterns in the immune tissues, suggesting its potential role in the innate immune response. The suppression of cathepsin L-like altered the expression of immune-related genes associated with the Toll and IMD pathway. Besides, autophagy-related genes such as Atg6, Atg8, VAMP2, Vps4, and syntaxin expression were also altered, indicating that cathepsin L-like regulates innate immunity and autophagy. Fluorescence microscopic analysis exhibited that cathepsin L-like was localized in the cytoplasm, and it was activated and dispersed throughout the cytoplasm and nucleus following the induction of anti-microbial autophagy. Altogether, our data suggest that cathepsin L-like may regulate the innate immune response and anti-microbial autophagy in the silkworm, B. mori.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.