Abstract

The main result of the paper is the following generalization of Forelli’s theorem (Math. Scand. 41:358–364, 1977): Suppose F is a holomorphic vector field with singular point at p, such that F is linearizable at p and the matrix is diagonalizable with eigenvalues whose ratios are positive reals. Then any function φ that has an asymptotic Taylor expansion at p and is holomorphic along the complex integral curves of F is holomorphic in a neighborhood of p. We also present an example to show that the requirement for ratios of the eigenvalues to be positive reals is necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.