Abstract

Reaction systems are a formal model of interactions between biochemical reactions. They consist of sets of reactions, where each reaction is classified by its set of reactants (needed for the reaction to take place), its set of inhibitors (each of which prevents the reaction from taking place), and its set of products (produced when the reaction takes place) – the set of reactants and inhibitors form the resources of the reaction. Each reaction system defines a (transition) function on its set of states. (States here are subsets of an a priori given set of biochemical entities.) In this paper we investigate properties of functions defined by reaction systems. In particular, we investigate how the power of defining functions depends on available resources, and we demonstrate that with small resources one can define functions exhibiting complex behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.