Abstract

Human lung organoids (HLOs) are increasingly used to model development and infectious diseases, however their ability to recapitulate functional pulmonary tissue response to nanomaterial (NM) exposures has yet to be demonstrated. Here, we established a lung organoid exposure model that utilises microinjection to present NMs into the lumen of organoids. Our model assures efficient, reproducible and controllable exposure of the apical pulmonary epithelium, emulating real-life human exposure scenario. By comparing the impact of two well studied carbon-based NMs, graphene oxide sheets (GO) and multi-walled carbon nanotubes (MWCNT), we validated lung organoids as tools for predicting pulmonary NM-driven responses. In agreement with established in vivo data, we demonstrate that MWCNT, but not GO, elicit adverse effects on lung organoids, leading to a pro-fibrotic phenotype. Our findings reveal the capacity and suitability of HLOs for hazard assessment of NMs, aligned with the much sought-out 3Rs (animal research replacement, reduction, refinement) framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call