Abstract

A novel representation is developed as a measure for multilinear fractional embedding. Corresponding extensions are given for the Bourgain-Brezis-Mironescu theorem and Pitt’s inequality. New results are obtained for diagonal trace restriction on submanifolds as an application of the Hardy-Littlewood-Sobolev inequality. Smoothing estimates are used to provide new structural understanding for density functional theory, the Coulomb interaction energy and quantum mechanics of phase space. Intriguing connections are drawn that illustrate interplay among classical inequalities in Fourier analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.