Abstract

Single fast muscle fibres in the tropical fish Oreochromis andersonii were found to contain two myosin light chains (LC1s; LC1f1* or LC1f2*). Breeding experiments confirmed that the different LC1s were of allelic origin and their inheritance patterns conformed to Mendelian expectations (1:2:1). The LC1s differed in apparent relative molecular mass by 800­900. No other differences in myosin subunits were found between the LC1 genotypes. The molar ratios of LC3:LC1(total) in the fast muscle of O. andersonii homozygous for LC1f1* or LC1f2* and heterozygous for both alleles were 2.0:1, 2.1:1 and 2.2:1, respectively, as determined by capillary electrophoresis. The maximum contraction velocity (Vmax) of single skinned muscle fibres was determined at 20 °C by the slack-test method. Vmax values (fibre lengths s-1) for fast muscle fibres from O. andersonii which were homozygous for either LC1f2* or LC1f1* were 5.3 and 3.3, respectively, compared with 3.8 when both alleles were present. Crosses between Oreochromis niloticus and O. andersonii produced F1 hybrids which were heterozygous for either LC1n/LC1f1* or LC1n/LC1f2*, where LC1n is the myosin light chain for O. niloticus. The distribution of myosin light chain genotypes in hybrid offspring was not significantly different from the expected Mendelian 1:1 ratio (47 %: 53 %). The Vmax (fibre lengths s-1) of muscle fibres containing LC1f2* from hybrid Oreochromis was 4.3 compared with 3.1 for the LC1f1* genotype. The results are consistent with a functionally significant allelic variation in myosin LC1 in fast muscle fibres from O. andersonii which is also expressed in hybrid genotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call