Abstract

AbstractThe electrospinning of a polymer melt is an interesting process for medical applications because it eliminates the cytotoxic effects of solvents in the electrospinning solution. Wound dressings made from thermoplastic polyurethane (TPU), particularly as a porous structured electrospun membrane, are currently the focus of scientific and commercial interest. In this study, we developed a functionalized fibrillar structure as a novel antibacterial wound‐dressing material with the melt‐electrospinning of TPU. The surface of the fibers was modified with poly(ethylene glycol) (PEG) and silver nanoparticles (nAg's) to improve their wettability and antimicrobial properties. TPU was processed into a porous, fibrous network of beadless fibers in the micrometer range (4.89 ± 0.94 μm). The X‐ray photoelectron spectroscopy results and scanning electron microscopy images confirmed the successful incorporation of nAg's onto the surface of the fiber structure. An antibacterial test indicated that the PEG‐modified nAg‐loaded TPU melt‐electrospun structure had excellent antibacterial effects against both a Gram‐positive Staphylococcus aureus strain and Gram‐negative Escherichia coli compared to unmodified and PEG‐modified TPU fiber mats. Moreover, modification with nAg's and PEG increased the water‐absorption ability in comparison to unmodified TPU. The cell viability and proliferation on the unmodified and modified TPU fiber mats were investigated with a mouse fibroblast cell line (L929). The results demonstrate that the PEG‐modified nAg‐loaded TPU mats had no cytotoxic effect on the fibroblast cells. Therefore, the melt‐electrospun TPU fiber mats modified with PEG and nAg have the potential to be used as antibacterial, humidity‐managing wound dressings. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40132.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.