Abstract

RNA interference (RNAi) has shown substantial promise as a sustainable pest management solution. However, the efficacy of RNAi-based insecticides heavily relies on advanced nanocarrier-mediated delivery systems. In this study, we modified raw graphene oxide into positively charged nanocarriers (GONs) tailored to bind with double-stranded RNA (dsRNA). The resulting GONs@dsRNA complexes demonstrated a small particle size (106 nm) and maintained stability under various conditions, including insect gut extracts, extreme pH, and extreme temperature. Furthermore, GONs efficiently transported dsRNA molecules into Drosophila S2 cells and Lepidoptera Sf9 cells, leading to an enhanced target transcript knockdown. Targeting the vacuolar ATPase gene, vha26, induced significant mortality and target transcript knockdown in D. suzukii adults but not in S. exigua. Finally, GONs@dsRNA complexes exhibited negligible cytotoxicity at both the cellular and organismal levels. This study demonstrates the potential of GONs as a biosafe nanovehicle for efficient dsRNA delivery into insects, presenting an alternative strategy for advancing RNAi applications in fundamental studies and pest control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.