Abstract
In assessments of skeletal variation, allometry (disproportionate change of shape with size) is often corrected to examine size-independent variation for hypotheses relating to function. However, size-related trade-offs in functional demands may themselves be an underestimated driver of mammalian cranial diversity. Here, we use geometric morphometrics alongside dental measurements to assess craniodental allometry in the rock-wallaby genus Petrogale (all 17 species, 370 individuals). We identified functional aspects of evolutionary allometry that can be both extensions of, and correlated negatively with, static or ontogenetic allometric patterns. Regarding constraints, larger species tended to have relatively smaller braincases and more posterior orbits, the former of which might represent a constraint on jaw muscle anatomy. However, they also tended to have more anterior dentition and smaller posterior zygomatic arches, both of which support the hypothesis of relaxed bite force demands and accommodation of different selective pressures that favour facial elongation. By contrast, two dwarf species had stouter crania with divergent dental adaptations that together suggest increased relative bite force capacity. This likely allows them to feed on forage that is mechanically similar to that consumed by larger relatives. Our results highlight a need for nuanced considerations of allometric patterns in future research of mammalian cranial diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.