Abstract
Graphene is currently attracting attention for radiation absorption particularly at gigahertz and terahertz frequencies. In this work, composites formed by graphene-augmented γ-Al2O3 nanofibers embedded into the α-Al2O3 matrix are tested for X-band absorption efficiency. Composites with 15 and 25 wt % of graphene fillers with shielding effectiveness (SE) of 38 and 45 dB, respectively, show a high reflection coefficient, while around the electrical percolation threshold (∼1 wt %), an SE of 10 dB was achieved. Furthermore, based on the dielectric data obtained for varying fractions of graphene-/γ-Al2O3-added fillers, a functionally graded multilayer is constructed to maximize the device efficiency. The fabricated multilayer offers the highest absorption efficiency of 99.99% at ∼9.6 GHz and a full X-band absorption of >90% employing five lossy layers of 1-3-5-15 and 25 wt % of graphene/γ-Al2O3 fillers. The results prove a remarkable potential of the fillers and various multilayer designs for broad-band and frequency-specific microwave absorbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.