Abstract

MDP (medium density particleboard) panels are normally graded in composition along their cross-section, using low-size particles and high concentration of adhesive on the particleboard surface (leading to improved physical and mechanical properties), and high-size particles in the particleboard core (interior), which provide higher porosity. Then, the aim of this study was to evaluate the impact of using different contents of bamboo particles in the particleboard core, on their physical and mechanical properties. The production of the panels was carried out using Pinusoocarpa (P) and Bambusavulgaris var. Vittata (B) particles in different contents (100% P, 100% B, 50% de B e 50% de P, 25% de B e 75% de P, 75% de B e 25% de P) in the core of the particleboards. The face of the particleboards were composed of P particles. The panels were produced with nominal density of 0.70 g/cm3, 40:60 face:core relation, 11% urea-formaldehyde adhesive in the faces and 8% adhesive for the core, specific pressure of 3.92 MPa, 160 °C temperature and pressing time of 8 min. After seasoning, the panels were submitted to evaluation of the thickness swelling (TS) and water absorption (WA) after 2 and 24 h of immersion, apparent density (AD), internal bonding (IB), modulus of rupture (MOR) and modulus of elasticity (MOE) under static bending. There was no statistical difference between the treatments for AD, IB, MOR and MOE values. Panels produced with high contents of bamboo particles (100% B, 75% B e 50% B) in the core, presented the lower WA and TS values, leading to improved dimensional stability than panels with only pinus particles. The present results show the important impact of using functionally gradation and bamboo particles on the physical properties of the MDP panels produced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.