Abstract

We report the finding of an optimal layout of functionally graded materials (FGM) towards indentation resistance. This optimum is characterized by a minimum in tensile surface stresses that can lead to a belated onset of cracking compared to homogeneous materials of uniform stiffness. The parameters influencing the tensile surface stresses in a FGM consisting of a soft surface layer, a stiff base material and a graded region between them have been investigated by finite element analysis and an optimum is reported for the first time. The results in general units can be used to design the gradient in any FGM from plastics to ceramics to result in low tensile surface stresses for a given load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.