Abstract

In recent decades, the numerical simulation for nonlinear oscillators has received much attention and a large number of integrators for oscillatory problems have been developed. In this chapter, based on the continuous finite element approach, we propose and analyse new energy-preserving functionally-fitted, in particular, trigonometrically-fitted methods of an arbitrarily high order for solving oscillatory nonlinear Hamiltonian systems with a fixed frequency. In order to implement these new methods in an accessable and efficient style, they are formulated as a class of continuous-stage Runge–Kutta methods. The numerical results demonstrate the remarkable accuracy and efficiency of the new methods compared with the existing high-order energy-preserving methods in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.