Abstract

Tendons with different in vivo functions are known to have different baseline biomechanics, biochemistry and ultrastructure, and these can be affected by changes in loading. However it is not know whether different tendon types respond in the same, or different ways, to changes in loading.This study performed in vitro un-loading (stress deprivation) in culture on ovine medial extensor tendons (MET, a positional tendon), and superficial and deep digital flexor tendons (SDFTs and DDFTs, with energy-storing and intermediate functions respectively), for 21 days (n = 14 each). Tensile strength and elastic modulus were then measured, followed by biochemical assays for sulphated glycosaminoglycan (sGAG) and hydroxyproline content. Histological inspection for cell morphology, cell density and collagen alignment was also performed.The positional tendon (MET) had a significant reduction (∼50%) in modulus and strength (P < 0.001) after in vitro stress-deprivation, however there were no significant effects on the energy-storing tendons (SDFT and DDFT). In contrast, sGAG was not affected in the MET, but was reduced in the SDFT and DDFT (P < 0.001). All tendons lost compactness and collagen organisation, and had reduced cell density, but these were more rapid in the MET than the SDFT and DDFT.These results suggest that different tendon types respond to identical stimuli in different ways, thus; (i) the results from an experiment in one tendon type may not be as applicable to other tendon types as previously thought, (ii) positional tendons may be particularly vulnerable to clinical stress-deprivation, and (iii) graft tendon source may affect the biological response to loading in ligament and tendon reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.