Abstract

In sensory areas of neocortex, thalamocortical afferents project primarily onto the spiny stellate neurons of Layer 4. Anatomical evidence indicates that these cells receive most of their excitatory input from other cortical neurons, including other spiny stellate cells. Although this local network must play an important role in sensory processing, little is known about the properties of the neurons and synapses involved. We have produced a slice preparation of mouse barrel cortex that isolates Layer 4. We report that excitatory interaction between spiny stellate neurons is largely via N-methyl-D-aspartate receptors (NMDARs) and that a given neuron contains more than one type of NMDAR, as distinguished by voltage dependence. Thus, spiny stellate cells act as effective integrators of powerful and persistent NMDAR-mediated recurrent excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.